Metodyka badań właściwości transportowych tlenków i siarczków metali przejściowych

http://home.agh.edu.pl/~grzesik

Metodyka badań struktury defektów i właściwości transportowych tlenków i siarczków metali

- Określenie rodzaju podsieci krystalicznej danego związku, w której występuje dominujące zdefektowanie (np. metodą markerów)
- 2. Określenie odstępstwa od stechiometrii badanego związku
- 3. Określenie rodzaju i stężenia defektów punktowych w związku (struktura defektów)
- Określenie ruchliwości defektów w danym związku (właściwości transportowe)

Metody określania ruchliwości defektów w tlenkach

- Bezpośrednia metoda grawimetryczna
- Metoda Rosenburga
- Metoda volumetryczna lub manometryczna

Schemat aparatury mikrotermograwimetrycznej do badań w atmosferze tlenu

Schemat aparatury mikrotermograwimetrycznej do badań w atmosferze He-S₂

Z. Grzesik, S. Mrowec, T. Walec and J. Dąbek, "New microthermogravimetric apparatus, kinetics of metal sulphidation and transport properties of transition metal sulphides", Journal of Thermal Analysis and Calorimetry, **59**, 985-997 (2000).

GŁÓWNE ZALETY APARATURY

- czułość: **0,1 μg**
- możliwość dokonywania gwałtownych zmian ciśnienia par siarki
- możliwość prowadzenia długotrwałych pomiarów

Mn – zależność k_p od ciśnienia

Z. Grzesik, S. Mrowec, T. Walec and J. Dąbek, "New microthermogravimetric apparatus, kinetics of metal sulphidation and transport properties of transition metal sulphides", Journal of Thermal Analysis and Calorimetry, **59**, 985-997 (2000).

Mn – kinetyka siarkowania przy gwałtownie zmienionym ciśnieniu par siarki

Z. Grzesik, "Własności transportowe zgorzelin siarczkowych powstających w procesie wysokotemperaturowej korozji metali", Ceramika, **87**, 1-124 (2005).

Schemat aparatury mikrotermograwimetrycznej do badań w mieszaninach H₂-H₂S

Z. Grzesik, "Własności transportowe zgorzelin siarczkowych powstających w procesie wysokotemperaturowej korozji metali", Ceramika, **87**, 1-124 (2005).

Współczynniki dyfuzji opisujące właściwości transportowe w tlenkach i siarczkach metali

- D_d współczynnik dyfuzji defektów [cm²s⁻¹]; opisuje ruchliwość defektów w warunkach istnienia równowagi termodynamicznej w związku tworzącym zgorzelinę
- <u>mierównowagowych</u>
 <u>mierównowagowych</u>
 <u>mierównowagowych</u>
- D_{Me} współczynnik dyfuzji własnej [cm²s⁻¹]; opisuje ruchliwość atomów (jonów) w związku tworzącym zgorzelinę

Grawimetria w badaniach struktury defektów i własności transportowych zgorzelin

- metoda reekwilibracji (relaksacji)
- metoda dwuetapowego utleniania (Rosenburga)

S. Mrowec and K. Hashimoto, J. Materials Sci., **30**, 4801 (1995)

Z. Grzesik and S. Mrowec, "Kinetics and thermodynamics of point defects in nonstoichiometric metal oxides and sulphides. Microthermogravimetric study", J. Therm. Anal. Cal., **90**, 269-282 (2007).

Z. Grzesik, S. Mrowec and T. Walec, J. Phys. Chem. Solids, 61, 809 (2000).

Z. Grzesik, "Własności transportowe zgorzelin siarczkowych powstających w procesie wysokotemperaturowej korozji metali", Ceramika, **87**, 1-124 (2005).

A. J. Rosenburg, J. Electrochem. Soc., 107, 795 (1960).

T = const; p' = const

METODA REEKWILIBRACJI

$$\frac{\Delta m_t}{\Delta m_k} = 1 - \frac{8}{\pi^2} \sum_{n=0}^{\infty} \frac{1}{\left(2n+1\right)^2} \exp\left(-\frac{\left(2n+1\right)^2 \pi^2 \tilde{D} t}{4a^2}\right)$$

D̃ **t/a**² **> 0,2**:

$$1 - \frac{\Delta m_{t}}{\Delta m_{k}} = \frac{8}{\pi^{2}} \exp\left(-\frac{\tilde{D}\pi^{2}t}{4a^{2}}\right)$$
$$\ln\left(1 - \frac{\Delta m_{t}}{\Delta m_{k}}\right) = \ln\frac{8}{\pi^{2}} - \frac{\tilde{D}\pi^{2}t}{4a^{2}}$$

gdzie:

- $\Delta m_t zmiana masy próbki po czasie t$
- ∆m_k całkowita zmiana masy próbki
- a połowa grubości próbki
- D współczynnik dyfuzji chemicznej.
Teoretyczny przebieg reekwilibracji

Metoda dwuetapowego utleniania (Rosenburga)

I etap siarkowania

Stan równowagi termodynamicznej T = const; p' = const

II etap siarkowania

$$C(x) = C_{0} + (C_{k} - C_{0})\frac{x}{X_{0}} + \frac{2}{\pi}\sum_{n=1}^{\infty} \frac{C_{k}\cos(n\pi) - C_{0}}{n}\sin\left(\frac{n\pi x}{X_{0}}\right)\exp\left(-\frac{n^{2}\pi^{2}\tilde{D}t}{X_{0}^{2}}\right) + \frac{4C_{0}}{\pi}\sum_{m=0}^{\infty}\frac{1}{2m+1}\sin\frac{(2m+1)\pi x}{X_{0}}\exp\left(-\frac{(2m+1)^{2}\pi^{2}\tilde{D}t}{X_{0}^{2}}\right)$$

$$\begin{split} \mathsf{N}_{d} &= \widetilde{\mathsf{D}} \int_{0}^{t} \left(\frac{\partial c(x)}{\partial x} \right) \bigg|_{x=X_{0}} dt = -\frac{2C_{k}X_{0}}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \cdot \left[\exp\left(-\frac{\widetilde{\mathsf{D}}\pi^{2}n^{2}t}{X_{0}^{2}}\right) - 1 \right] + \\ & \frac{\widetilde{\mathsf{D}}C_{k}t}{X_{0}} + \frac{4C_{k}X_{0}}{\pi^{2}} \sum_{m=0}^{\infty} \frac{1}{\left(2m+1\right)^{2}} \cdot \left[\exp\left(-\frac{\widetilde{\mathsf{D}}\pi^{2}\left(2m+1\right)^{2}t}{X_{0}^{2}}\right) - 1 \right] \end{split}$$

$$N_{d} = \frac{\tilde{D}C_{k}t}{X_{0}} + \frac{X_{0}C_{k}}{3}$$
$$N_{d} = \frac{2C_{k}\sqrt{\tilde{D}t}}{\sqrt{\pi}}$$

dla $t > X_0^2/2\tilde{D}$

dla $t \ll X_0^2/\widetilde{D}$

Metoda Rosenburga

$$\widetilde{D} = \left(\frac{1,128k_{|}X_{0}}{k_{p}}\right)^{2}$$
$$C_{d} = \frac{\left(\frac{k_{p}}{1,128}\right)^{2}}{k_{|}X_{0}}$$

gdzie:

 \tilde{D} – współczynnik dyfuzji chemicznej, C_d – stężenie defektów, X₀ – grubość zgorzeliny w I etapie utleniania, k_p (gcm⁻²s^{-0,5}) i k_I (gcm⁻²s⁻¹) – współczynniki kierunkowe prostych wykreślonych odpowiednio w układzie parabolicznym i liniowym.

Przykłady badań struktury defektów i własności transportowych tlenków i siarczków metali

Mn_{1-y}S – kinetyka reekwilibracji

$Mn_{1-y}S$ – zależność \widetilde{D} od ciśnienia

Porównanie eksperymentalnych i obliczonych wartości k'

$$k_p' = \widetilde{D} \cdot y$$

I. Kinetyka siarkowania Mn (eksperyment)

$$k'_{p} = 3,49 \cdot 10^{-3} \cdot p_{S_{2}}^{1/6} \exp\left(-\frac{127,0 \text{ kJ/mol}}{\text{RT}}\right) \text{ cm}^{2} \text{s}^{-1}$$

II. Reekwilibracja i odstępstwo od stechiometrii (obliczenia)

$$k'_{p} = 2,09 \cdot 10^{-3} \cdot p_{S_{2}}^{1/6} \exp\left(-\frac{123,5 \text{ kJ/mol}}{\text{RT}}\right) \text{ cm}^{2} \text{s}^{-1}$$

III. Dwuetapowe siarkowanie (obliczenia)

$$k'_{p} = 2,62 \cdot 10^{-3} \cdot p_{S_{2}}^{1/6} exp\left(-\frac{124,4 \text{ kJ/mol}}{\text{RT}}\right) \text{ cm}^{2} \text{s}^{-2}$$

Zgorzelina siarczkowa na **Mn** (1000 °C, $p(S_2) = 10^3$ Pa, 240 h)

Z. Grzesik, "Własności transportowe zgorzelin siarczkowych powstających w procesie wysokotemperaturowej korozji metali", Ceramika, **87**, 1-124 (2005).

MnS – rzut struktury krystalograficznej w kierunku (100)

Porównanie szybkości siarkowania i utleniania metali

 $Nb_{1+y}S_2$ – ciśnieniowa zależność odstępstwa od stechiometrii

Zależność D od temperatury dla wybranych siarczków i tlenków metali

Nb_{1+y}S₂ – zależność D̃ od temperatury – badania własne

Z. Grzesik, S. Mrowec, "On the sulphidation mechanism of niobium and some Nb-alloys at high temperatures", Corrosion Science, **50**, 605-613 (2008).
Zgorzelina siarczkowa na Nb (1000 °C, $p(S_2) = 1 Pa$, 120 h)

powierzchnia

przełam

$Nb_{1+y}S_2$ – rzut perspektywiczny struktury krystalograficznej (dla y = 1/3) w kierunku (100)

Zależność D od temperatury dla siarczków niklu i kobaltu – badania własne

 $Co_{4-v}S_3$ – porównanie eksperymentalnych i obliczonych wartości k'_D

 $Co_{9-v}S_8$ – porównanie eksperymentalnych i obliczonych wartości k'_D

 $Ni_{1-v}S$ – porównanie eksperymentalnych i obliczonych wartości k'_{D}

Co_9S_8 – rzut struktury krystalograficznej w kierunku (100)

NiS – rzut struktury krystalograficznej w kierunku $\langle 100 \rangle$

Zależność współczynnika dyfuzji własnej od temperatury

Z. Grzesik, "Własności transportowe zgorzelin siarczkowych powstających w procesie wysokotemperaturowej korozji metali", Ceramika, **87**, 1-124 (2005).

Wpływ domieszkowania Cr na szybkość utleniania Co

Wpływ domieszkowania Cr na odstępstwo od stechiometrii w Co_{1-v}O

Kinetyka reekwilibracji Co_{1-y}O-Cr₂O₃

Wpływ domieszkowania Cr na dyfuzję chemiczną defektów w Co_{1-v}O

KONIEC